过程分析技术的相关法规与工具在制药行业中的应用进展

谢升谷, 黄艳, 孙逍, 郑金琪, 陶巧凤

中国药学杂志 ›› 2022, Vol. 57 ›› Issue (19) : 1589-1595.

PDF(1061 KB)
PDF(1061 KB)
中国药学杂志 ›› 2022, Vol. 57 ›› Issue (19) : 1589-1595. DOI: 10.11669/cpj.2022.19.001
综述

过程分析技术的相关法规与工具在制药行业中的应用进展

  • 谢升谷1,2, 黄艳2, 孙逍1, 郑金琪1, 陶巧凤1*
作者信息 +

Regulation Tools and Application Progress of Process Analysis Technology in Pharmaceutical Industry

  • XIE Sheng-gu1,2, HUANG Yan2, SUN Xiao1, ZHENG Jin-qi1, TAO Qiao-feng1*
Author information +
文章历史 +

摘要

随着过程分析技术(process analysis technology,PAT)在制药行业越来越受到重视,美国食品药品监督管理局(FDA)等官方机构正在积极推动应用PAT技术,力图从过程、工艺上保证产品的质量,改变目前主要依靠认证认可检查的现状。本文综述了制药行业中的PAT相关法规/指导原则发展进程以及常用的PAT工具和相关应用进展,为加强我国制药行业对PAT的理解提供一定参考, 推动制药企业将其融入生产过程, 从药品质量的源头抓起, 提高药品质量。

Abstract

As process analytical technology(PAT) is getting more and more attention in the pharmaceutical industry, official agencies including the FDA are actively promoting the application of PAT,trying to ensure the quality of products from manufacturing process and technique, and change the current situation that can only rely on strict and blunt certification specifications.This paper reviews the development process of PAT-related regulations/guidance principles in the pharmaceutical industry, as well as the commonly used PAT tools and related application progress, to provide a certain reference for strengthening the understanding of PAT indomestic pharmaceutical industry, and to promote pharmaceutical companies to integrate it into the production process to seize the source and improve the quality of medicines.

关键词

过程分析技术 / 制药行业 / 法规 / 指导原则

Key words

process analysis technology / pharmaceutical industry / regulation / guideline

引用本文

导出引用
谢升谷, 黄艳, 孙逍, 郑金琪, 陶巧凤. 过程分析技术的相关法规与工具在制药行业中的应用进展[J]. 中国药学杂志, 2022, 57(19): 1589-1595 https://doi.org/10.11669/cpj.2022.19.001
XIE Sheng-gu, HUANG Yan, SUN Xiao, ZHENG Jin-qi, TAO Qiao-feng. Regulation Tools and Application Progress of Process Analysis Technology in Pharmaceutical Industry[J]. Chinese Pharmaceutical Journal, 2022, 57(19): 1589-1595 https://doi.org/10.11669/cpj.2022.19.001
中图分类号: R944    R969   

参考文献

[1] DZIKI W, JIANG Z, RADSPINNER D A, et al. The FDA process analytical technology(PAT) initiative-an alternative pharmaceutical manufacturing practice(aPMP)[J]. Pharmacop Forum, 2004, 30(6): 2254-2262.
[2] WANG P, ZANG H C, ZENG Y Z. Causes and control of quality risks in drug production process[J]. Chin Pharm J (中国药学杂志), 2011, 46(13): 969-972.
[3] CHEW W, SHARRATT P.Trends in process analytical technology[J]. Anal Methods, 2010, 2(10): 1412-1438.
[4] LEE S L, O’CONNOR T F, YANG X C, et al. Modernizing pharmaceutical manufacturing: from batch to continuous production[J]. J Pharm Innov, 2015, 10(3): 191-199.
[5] KOMECKI M, SCHMIDT A, STRUBE J. PAT as key-enabling technology for QbD in pharmaceutical manufacturing-A conceptual review on upstream and downstream processing[J]. Chim Oggi, 2018, 36(6): 44-48.
[6] SHENG P P, LUO S Q, YIN L H. Application of process analysis technology in pharmaceutical production process[J]. Chin J Pharm Anal (药物分析杂志), 2018, 38(5): 748-757.
[7] KIM E J, KIM J H, KIM M S, et al. Process analytical technology tools for monitoring pharmaceutical unit pperations: a control strategy for continuous process verification[J].Pharmaceutics, 2021, 13(6): 919-967.
[8] ZHOU Z L.Quality control of traditional Chinese medicine using near infrared spectroscopy[D]. Guangzhou: South China University of Technology, 2017.
[9] NAGY B, FARKAS A, BORBAS E, et al. Raman spectroscopy for process analytical technologies of pharmaceutical secondary manufacturing[J]. AAPS Pharmscitech, 2019, 20(1): 1-16.
[10] NICOLSON F, JAMIESON L E, MABBOTT S, et al. Through barrier detection of ethanol using handheld Raman spectroscopy-conventional Raman versus spatially offset Raman spectroscopy(SORS)[J]. J Raman Spectrosc, 2017, 48(12): 1828-1838.
[11] BUTTE P, LAPCHAK P. Continuous laser induced fluorescence spectroscopy(CLIFS) technique for screening drugs by assessing the metabolic effects in real-time[J]. Neurology, 2013, 80(Suppl 7): 65.
[12] WERNER P, MUNZBERG M, HASS R, et al. Process analytical approaches for the coil-to-globule transition of poly(N-isopropylacrylamide) in a concentrated aqueous suspension[J]. Anal Bioanal Chem, 2017, 409(3): 807-819.
[13] SHAH S K H, IQBAL J, AHMAD P, et al. Laser induced breakdown spectroscopy methods and applications: a comprehensive review[J]. Radiat Phys Chem, 2020, 170(1): 1-23.
[14] YAN X. Studies on the application of machine learning in pharmaceutical process analysis[D]. Hangzhou: Zhejiang University, 2020.
[15] BEATTIE J R, ESMONDE-WHITE F W L. Exploration of principal component analysis: deriving principal component analysis visually using spectra[J].Appl Spectrosc, 2021, 75(4): 361-375.
[16] BIANCOLILLO A, MARINI F. Chemometric methods for spectroscopy-based pharmaceutical analysis[J].Front Chem, 2018, 6(1): 1-14.
[17] ZHANG C, GUO Y, LI M. Review of development and application of artificial neural network models[J].Comput Eng Appl(计算机工程与应用), 2021, 57(11): 57-69.
[18] DONG Q, ZANG H C, LIU A H, et al. Application of process analysis technology in pharmaceutical field and its enlightenment to China′s pharmaceutical industry[J]. Chin Pharm J (中国药学杂志), 2010, 45(12): 881-884.
[19] GUOVEIA F F, RAHBEK J P, MORTENSEN A R, et al. Using PAT to accelerate the transition to continuous API manufacturing[J]. Anal Bioanal Chem, 2017, 409(3): 821-832.
[20] LOREN B P, WLEKLINSKI M, KOSWARA A, et al. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine[J]. Chem Sci, 2017, 8(6): 4363-4370.
[21] MITIC A, CEVERA-PADRELL A E, MORTENSEN A R, et al. Implementation of near-infrared spectroscopy for in-line monitoring of a dehydration reaction in a tubular laminar reactor[J]. Org Process Res Dev, 2016, 20(2): 395-402.
[22] MCDONALD M A, MARSHALL G D, BOMMARIUS A S, et al. Crystallization kinetics of cephalexin monohydrate in the presence of cephalexin precursors[J]. Cryst Growth Des, 2019, 19(9): 5056-5074.
[23] TRAMPUZ M, TESLIC D, LIKOZAR B, et al. Process analytical technology-based(PAT) model simulations of a combined cooling, seeded and antisolvent crystallization of an active pharmaceutical ingredient(API)[J]. Powder Technol, 2020, 366(1): 873-890.
[24] ACEVEDO D, YANG X C, MOHAMMAD A, et al. Raman spectroscopy for monitoring the continuous crystallization of carbamazepine[J]. Org Process Res Dev, 2018, 22(2): 156-165.
[25] NAGY B, FARKAS A, GYURKES M, et al. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process[J]. Int J Pharm, 2017, 530(1-2):21-29.
[26] BOSTJIN N, DHONDT W, VERVAET C, et al. PAT-based batch statistical process control of a manufacturing process for a pharmaceutical ointment[J]. Eur J Pharm Sci, 2019, 136(1): 1-9.
[27] BOSTJIN N, HELLINGS M, VAN DER VEEN M, et al. In-line UV spectroscopy for the quantification of low-dose active ingredients during the manufacturing of pharmaceutical semi-solid and liquid formulations[J]. Anal Chim Acta, 2018, 1013(1): 54-62.
[28] NETCHACOVITCH L, THIRY J, DE BLEYE C, et al. Global approach for the validation of an in-line Raman spectroscopic method to determine the API content in real-time during a hot-melt extrusion process[J].Talanta, 2017, 171(1):45-52.
[29] BOSTJIN N, VAN RENTERGHEM J, VANBILLEMONT B, et al. Continuous manufacturing of a pharmaceutical cream: investigating continuous powder dispersing and residence time distribution(RTD)[J]. Eur J Pharm Sci, 2019, 132(1): 106-117.
[30] SASAKURA D, NAKAYAMA K, CHIKUMA T. Application of the quantitative detection of a change in concentration of magnesium stearate in a feeder tube of tableting manufacture by real-time near-infrared spectroscopy[J]. Pharmazie, 2015, 70(10): 636-639.
[31] LEE H P, GULAK Y, CUITINO A M. Transient temperature monitoring of pharmaceutical tablets during compaction using infrared thermography[J]. AAPS Pharmscitech, 2018, 19(5):2426-2433.
[32] PAULI V, ROGGO Y, PELLEGATTI L, et al. Process analytical technology for continuous manufacturing tableting processing: A case study[J]. J Pharm Biomed Anal, 2019, 162(1): 101-111.
[33] NISHII T, MATSUZAKI K, MORITA S. Real-time determination and visualization of two independent quantities during a manufacturing process of pharmaceutical tablets by near-infrared hyperspectral imaging combined with multivariate analysis[J]. Int J Pharm, 2020, 590(1): 1-7.
[34] NAIDU V R, DESHPANDE R S, SYED M R, et al. PAT-based control of fluid bed coating process using NIR spectroscopy to monitor the cellulose coating on pharmaceutical pellets[J]. AAPS Pharmscitech,2017, 18(6): 2045-2054.
[35] NAKANO Y, KATAKUSE Y, AZECHI Y. An application of X-Ray fluorescence as process analytical technology(PAT) to monitor particle coating processes[J]. Chem Pharm Bull, 2018, 66(6): 596-601.
[36] SUN Z Y, LI C, LI L, et al. Study on feasibility of determination of glucosamine content of fermentation process using a micro NIR spectrometer[J]. Spectrochim Acta Part A, 2018, 201(1):153-160.
[37] EAMONDE-WHITE K A, CUELLAR M, UERPMANN C, et al. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing[J]. Anal Bioanal Chem, 2017, 409(3): 637-649.
[38] WEST J M, FEROZ H, XU X, et al. Process analytical technology for on-line monitoring of quality attributes during single-use ultrafiltration/diafiltration[J]. Biotechnol Bioeng, 2021, 118(6): 2293-2300.
[39] LOFGREN A, GOMIS-FONS J, ANDERSSON N, et al. An integrated continuous downstream process with real-time control: A case study with periodic countercurrent chromatography and continuous virus inactivation[J]. Biotechnol Bioeng, 2021, 118(4): 1664-1676.
[40] TEN HAVE R, REUBSAET K, VAN HERPEN P, et al. Demonstrating functional equivalence of pilot and production scale freeze-drying of BCG[J]. Plos One, 2016, 11(3): 1-13.
[41] VAN BOCKSTAL P J, DE MEYER L, CORVER J, et al. Noncontact infrared-mediated heat transfer during continuous freeze-drying of unit doses[J]. J Pharm Sci, 2017, 106(1): 71-82.
[42] GAO L L, ZHONG L, ZHANG J, et al. Water as a probe to understand the traditional Chinese medicine extraction process with near infrared spectroscopy: A case of Danshen(Salvia miltiorrhizaBge) extraction process[J].Spectrochim Acta Part A, 2021, 244(1): 1-11.
[43] YANG Y, WANG L, WU Y J, et al. On-line monitoring of extraction process of Flos Lonicerae Japonicae using near infrared spectroscopy combined with synergy interval PLS and genetic algorithm[J]. Spectrochim Acta Part A, 2017, 182(1): 73-80.
[44] LI Y, SHI X, WU Z, et al. Near-infrared for on-line determination of quality parameter of Sophora japonica L.(formula particles): From lab investigation to pilot-scale extraction process[J]. Pharmacogn Mag, 2015, 11(41): 8-13.
[45] LIU R H, SUN Q F, HU T, et al. Multi-parameters monitoring during traditional Chinese medicine concentration process with near infrared spectroscopy and chemometrics[J]. Spectrochim Acta Part A, 2018, 192(1): 75-81.
[46] XUE J T, YANG Q W, JING Y, et al. Rapid determination of puerarin by near-infrared spectroscopy during percolation and concentration process of puerariaelobatae radix[J]. Pharmacogn Mag, 2016, 12(47): 188-192.
[47] WU Z S, XU B, DU M, et al. Validation of a NIR quantification method for the determination of chlorogenic acid in Lonicera japonica solution in ethanol precipitation process[J]. J Pharm Biomed, 2012, 62(1): 1-6.
[48] JIN Y, WU Z Z, LIU X S, et al. Near infrared spectroscopy in combination with chemometrics as a process analytical technology(PAT) tool for on-line quantitative monitoring of alcohol precipitation[J]. J Pharm Biomed, 2013, 77(1): 32-39.
[49] LI W L, HAN H F, CHENG Z W, et al. A feasibility research on the monitoring of traditional Chinese medicine production process using NIR-based multivariate process trajectories[J]. Sensor Actuat B Chem, 2016, 231(1): 313-323.
[50] XIONG H S, GONG X C, QU H B. Monitoring batch-to-batch reproducibility of liquid-liquid extraction process using in-line near-infrared spectroscopy combined with multivariate analysis[J]. J Pharm Biomed, 2012, 70(1): 178-187.
[51] LI K Y, WANG W Y, LIU Y P, et al. Near-infrared spectroscopy as a process analytical technology tool for monitoring the parching process of traditional Chinese medicine based on two kinds of chemical indicators[J]. Pharmacogn Mag, 2017, 13(50): 332-337.
[52] ZHOU Y M, YANG J, LI C, et al. Near-infrared spectroscopy as a process analytical technology tool for monitoring the steaming process of gastrodiaerhizoma with multiparameters and chemometrics[J]. J Anal Methods Chem, 2020, 2020(1): 1-12.
[53] LIU X N, CHE X Q, LI K Y, et al. Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes[J]. Plasma Sci Technol, 2020, 22(7): 1-7.

基金

浙江省药品监督管理局科技计划资助(2021005);浙江省药品监督管理与产业发展研究会课题资助(ZYH2021003);浙江省医药科技计划面上项目资助(2020ky529)
PDF(1061 KB)

Accesses

Citation

Detail

段落导航
相关文章

/